Course Outcomes – Program Outcomes (COPO) Mapping

Program Outcomes (PO): CBCS: B.Sc.(Hons.) Mathematics

Learning Outcomes based Curriculum Framework (LOCF)

The current focus in higher education is to shift from teacher-centric approach to learnercentric approach. For this as one of the aims, UGC has introduced the learning outcomes based curriculum framework for undergraduate education. The learning outcomes based curriculum framework for B.Sc. (Hons.) Mathematics is prepared keeping this in view. The framework is expected to provide a student with knowledge and skills in mathematics along with generic and transferable skills in other areas that help in personal development, employment and higher education in the global world. The programme-learning outcomes and course learning outcomes have been clearly specified to help prospective students.

ABBREVIATIONS / NOMENCLATURE

Sno.	Nomenclature	Description	Aggregate Courses
1	PO	Program Outcome	PO1, PO2, PO3, PO4, PO5
2	CO	Course Outcome	CO1, CO2, CO3, CO4,
			CO5, CO6
3	DSC	Core Courses	CC1,CC2, CC3, CC4, CC5,
			CC6, CC7, CC8, CC9,
			CC10. CC11, CC12, CC13,
			CC14
4	DSE	Discipline Specific	DSE1, DSE2, DSE3, DSE4
		Electives	
5	GE	General Electives	GE1 , GE2, GE3, GE4
6	BAP	B.A(Prog.)	BAP1, BAP2, BAP3,
			BAP4

Sno.	Program Outcomes (PO): B.Sc.(Hons.) Mathematics	Statements
1.	PO1	Communicate mathematics effectively by written, computational and graphic means.
2.	PO2	Create mathematical ideas from basic axioms.
3.	PO3	Gauge the hypothesis, theories, techniques and proofs provisionally.
4.	PO4	Utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.
5.	PO5	Identify applications of mathematics in other disciplines and in the real-world, leading to enhancement of career prospects in a plethora of fields and research.

Course Outcomes (CO): B.Sc.(Hons.) Mathematics

		SEME	STER 1:	
		CC1: 0	Calculus	
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement	
32351101	CC1: Calculus	CO1	Learn first and second derivative tests for relative extrema and apply the knowledge in problems in business, economics and life sciences.	
		CO2	Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference.	
		CO3	Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas.	
		CO4	Understand the calculus of vector functions and its use to develop the basic principles of planetary motion.	
	CC2: Algebra			
		CO1	Employ De Moivre's theorem in a number of applications to solve numerical problems.	
32351102	CC2: Algebra	CO2	Learn about equivalent classes and cardinality	

1	1		
		~ ~ ~ ~	of a set.
		CO3	Use modular arithmetic and basic properties
			of congruences.
		CO4	Recognize consistent and inconsistent systems
			of linear equations by the row echelon form of
			the augmented matrix.
		CO5	Find eigenvalues and corresponding
			eigenvectors for a square matrix.
			HONOURS): lculus
		CO1	Sketch the curves in Cartesian and polar coordinates as well as learn techniques of
			sketching the conics.
		CO2	Visualize three dimensional figures and
			calculate their volumes and surface areas.
23355101	GE1: Calculus	CO3	Understand limits, continuity and derivatives of functions of several variable and vector- valued functions.
	I	BA PROGR	AM: Calculus
62351101	BAP1: Calculus	CO1	Understand continuity and differentiability in terms of limits.
02001101		CO2	Describe asymptotic behavior in terms of limits involving infinity.
		CO3	Use derivatives to explore the behavior of a
			given function, locating and classifying its
			extrema, and graphing the function.
		CO4	Understand the importance of mean value theorems.
		CO5	Learn about Maclaurin's series expansion of
		200	elementary functions.
			ciciliantui y functions.

		SEM	ESTER I:	COPO MAP	PING	
Papers			Program	Outcome : PO	С	
	Course	PO1	PO2	PO3	PO4	PO5
	Outcome:					
	CO					
	CO1				✓	✓
CC1	CO2	✓	\checkmark	✓		

	CO3	✓		✓	✓	
	CO4		\checkmark		\checkmark	
	CO5			\checkmark		\checkmark
	CO1		\checkmark		\checkmark	
	CO2				\checkmark	
CC2	CO3			\checkmark		\checkmark
	CO4				\checkmark	
	CO5				\checkmark	
	CO1	\checkmark			\checkmark	
	CO2	\checkmark	\checkmark		\checkmark	
GE1	CO3				\checkmark	\checkmark
	CO1			\checkmark	\checkmark	
	CO2		\checkmark		\checkmark	\checkmark
BAP1	CO3	✓	\checkmark			
	CO4				\checkmark	
	CO5				\checkmark	\checkmark

			STER II: al Analysis
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
32351201	CC3:Real Analysis	CO1	Understand many properties of the real line \mathbb{R} , including completeness and Archimedean properties.
		CO2	Learn to define sequences in terms of functions from \mathbb{N} to a subset of \mathbb{R} . systems of reference.
		CO3	Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.
		CO4	Apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.
	(CC4: Differe	ntial Equations

		CO1	Learn basics of differential equations and
		~ ~ ~ ~	mathematical modeling.
32351202	CC4:	CO2	Formulate differential equations for various
	Differential		mathematical models.
	Equations		
		CO3	Solve first order non-linear differential
			equations and linear differential equations of
			higher order using various techniques.
		CO4	Apply these techniques to solve and analyze
			various mathematical models.
			A HONOURS): r Algebra
		CO1	Visualize the space R^n in terms of vectors and the interrelation of vectors with matrices, and their application to computer graphics.
		CO2	Familiarize with concepts in vector spaces namely, basis, dimension and minima
32355202	GE2: Linear Algebra	CO3	spanning sets.Learn about linear transformations, transition matrix and similarity.
		CO4	Learn about orthogonality and to find approximate solution of inconsistent system of linear equations.
	Ι	BA PROGI	RAM: Algebra
62351201	BAP2: Algebra	CO1	Solving higher order algebraic equations.
		CO2	Become aware of De Moivre's theorem and its
			applications.
		CO3	
		CO3	
		CO3	Solving simultaneous linear equations with a most four unknowns.
			Solving simultaneous linear equations with a

		SEMI	ESTER II:	COPO MAI	PPING	
Papers			Program	Outcome : Po	С	
	Course	PO1	PO2	PO3	PO4	PO5
	Outcome:					
	CO					
	CO1	\checkmark	\checkmark	✓		
CC3	CO2			\checkmark	\checkmark	

	CO3			✓	\checkmark	
	CO4		\checkmark	✓	\checkmark	
	CO1	\checkmark			~	
	CO2		\checkmark		\checkmark	
CC4	CO3				\checkmark	\checkmark
	CO4			✓	\checkmark	\checkmark
	CO1		\checkmark			
	CO2			✓	\checkmark	
GE2	CO3		✓		\checkmark	
	CO4			 ✓ 	~	
	CO1				\checkmark	
	CO2			\checkmark		\checkmark
BAP2	CO3		\checkmark		\checkmark	
	CO4		\checkmark		\checkmark	

	CC		STER III: f Real Functions
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
32351301	CC5: Theory of	CO1	Have a rigorous understanding of the concept of limit of a function.
	Real Functions	CO2	Learn about continuity and uniform continuity of functions defined on intervals.
		CO3	Understand geometrical properties of continuous functions on closed and bounded intervals.
		CO4	Learn extensively about the concept of differentiability using limits, leading to a better understanding for applications.
		CO5	Know about applications of mean value theorems and Taylor's theorem.
		CC6: Gro	up Theory-I
		CO1	Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc.
32351302	CC6: Group Theory-I	CO2	Link the fundamental concepts of groups and symmetrical figures.
		CO3	Analyze the subgroups of cyclic groups and

			classify subgroups of cyclic groups.
		CO4	Explain the significance of the notion of
			cosets, normal subgroups and factor groups.
		CO5	Learn about Lagrange's theorem and Fermat's
			Little theorem.
		CO6	Know about group homomorphisms and group
			isomorphisms.
	С	C7: Multiv	variate Calculus
32351303	CC7:	CO1	Learn the conceptual variations when
	Multivariate		advancing in calculus from one variable to
	Calculus		multivariable discussion.
		CO2	Understand the maximization and
			minimization of multivariable functions
			subject to the given constraints on variables.
		CO3	Learn about inter-relationship amongst the
			line integral, double and triple integral
			formulations.
		CO4	Familiarize with Green's, Stokes' and Gauss
			divergence theorems.
		Programm	ing and Game Theory
	Lincur	Programm	ing and Game Theory
		CO1	Learn about the simplex method used to find
			Learn about the simplex method used to find optimal solutions of linear optimization
		CO1	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.
			Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. Write the dual of a linear programming
32355345	GE3: Linear	CO1	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. Write the dual of a linear programming problem.
32355345	GE3: Linear	CO1 CO2	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming
32355345		CO1 CO2	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment
32355345	GE3: Linear Programming	CO1 CO2	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment
32355345	GE3: Linear Programming and Game	CO1 CO2	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment
32355345	GE3: Linear Programming and Game	CO1 CO2 CO3	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. Write the dual of a linear programming problem. Solve the transportation and assignment problems.
32355345	GE3: Linear Programming and Game	CO1 CO2 CO3	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games
32355345	GE3: Linear Programming and Game	CO1 CO2 CO3	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution
32355345	GE3: Linear Programming and Game Theory	CO1 CO2 CO3 CO4	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.
	GE3: Linear Programming and Game Theory BA PROGRAM:	CO1 CO2 CO3 CO4 Analytic	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.Geometry and Applied Algebra
32355345 62354343	GE3: Linear Programming and Game Theory	CO1 CO2 CO3 CO4	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.
	GE3: Linear Programming and Game Theory BA PROGRAM: BAP3: Analytic Geometry and Applied	CO1 CO2 CO3 CO4 Analytic	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.Geometry and Applied Algebra
	GE3: Linear Programming and Game Theory BA PROGRAM: BAP3: Analytic Geometry and	CO1 CO2 CO3 CO4 Analytic CO1	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.Geometry and Applied AlgebraLearn concepts in two-dimensional geometry.
	GE3: Linear Programming and Game Theory BA PROGRAM: BAP3: Analytic Geometry and Applied	CO1 CO2 CO3 CO4 Analytic	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.Geometry and Applied AlgebraLearn concepts in two-dimensional geometry.Identify and sketch conics namely, ellipse,
	GE3: Linear Programming and Game Theory BA PROGRAM: BAP3: Analytic Geometry and Applied	CO1 CO2 CO3 CO4 Analytic CO1	Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.Write the dual of a linear programming problem.Solve the transportation and assignment problems.Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems.Geometry and Applied AlgebraLearn concepts in two-dimensional geometry.

	spheres, conicoids, straight lines and planes using vectors
CO4	Understand various applications of algebra in
	design of experiments, modelling of matching
	jobs, checking spellings, network reliability and scheduling of meetings.

	SEMESTER III: COPO MAPPING								
Papers			Program	Outcome : P	0				
	CoursePO1PO2PO3PO4PO5								
	Outcome:								
	CO								
	CO1		✓		\checkmark				
CC5	CO2		 ✓ 	✓	\checkmark				
	CO3		✓	✓					
	CO4				\checkmark	✓			
	CO5				✓				
	CO1		 ✓ 	✓	\checkmark				
	CO2	\checkmark							
CC6	CO3		✓	✓	✓				
	CO4			✓	✓				
	CO5				✓	✓			
	CO6			✓	\checkmark				
	CO1	\checkmark		✓					
	CO2		 ✓ 		✓				
CC7	CO3			✓	✓				
	CO4		✓			✓			
	CO1	\checkmark		✓	\checkmark				
	CO2		✓		√				
GE3	CO3			✓	\checkmark				
	CO4		✓		\checkmark	✓			
	CO1	\checkmark		✓					
	CO2			✓	\checkmark				
BAP3	CO3			✓	\checkmark				
	CO4		\checkmark		\checkmark	\checkmark			

	CC8:		TER IV: Terential Equations
Unique	Name of the	Course	

Paper Code	Paper	Outcome: CO	Statement
			Formulate, classify and transform first order PDEs into canonical form.
32351401	CC8: Partial	C01	
	Differential Equations	CO2	Learn about method of characteristics and separation of variables to solve first order PDE's.
		CO3	Classify and solve second order linear PDEs.
		CO4	Learn about Cauchy problem for second order PDE and homogeneous and nonhomogeneous wave equations.
		CO5	Apply the method of separation of variables for solving many well-known second order PDEs.
	CC9: Riema	nn Integrat	ion & Series of Functions
		CO1	Learn about some of the classes and monenties
	CC9: Riemann	COI	Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration.
32351402	Integration & Series of	CO2	Know about improper integrals including, beta and gamma functions.
	Functions	CO3	Learn about Cauchy criterion for uniform convergence and Weierstrass M-test for uniform convergence.
		CO4	Know about the constraints for the inter- changeability of differentiability and integrability with infinite sum.
		CO5	Approximate transcendental functions in terms of power series as well as, differentiation and integration of power series.
			differentiation and integration of power series.
	CC10: 2	Ring Theory	y & Linear Algebra-I
32351403	CC10: Ring Theory &	CO1	Learn about the fundamental concept of rings, integral domains and fields.
	Linear Algebra- I	CO2	Know about ring homomorphisms and isomorphisms theorems of rings.
		CO3	Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.
		CO4	Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.

			HONOURS): s of Analysis
		C01	Understand the real numbers and their basic properties.
		CO2	Be familiar with convergent and Cauchy sequences.
32355444	GE4: Elements of Analysis	CO3	Test the convergence and divergence of infinite series of real numbers.
		CO4	Learn about power series expansion of some elementary functions.
	I	BA PROGR	AM: Analysis
62354445	BAP4: Analysis	C01	Understand basic properties of the field of real numbers.
		CO2	Examine continuity and uniform continuity of functions using sequential criterion.
		CO3	Test convergence of sequence and series of real numbers.
		CO4	Distinguish between the notion of integral as anti-derivative and Riemann integral.

	SEMESTER IV: COPO MAPPING								
Papers	Program Outcome : PO								
	Course	PO1	PO2	PO3	PO4	PO5			
	Outcome:								
	CO								
	CO1	\checkmark	\checkmark						
CC8	CO2			✓	√				
	CO3		\checkmark	✓	√				
	CO4			✓	✓	✓			
	CO5			✓	✓				
	CO1		\checkmark	✓					
	CO2			✓	\checkmark				
CC9	CO3				√				
	CO4			✓	✓				
	CO5			✓	✓	✓			
	CO1		\checkmark	✓					
	CO2			✓	\checkmark				
CC10	CO3			✓	\checkmark	✓			
	CO4			✓	\checkmark	✓			

	CO1	\checkmark	\checkmark			
	CO2			\checkmark	\checkmark	
GE4	CO3			\checkmark	\checkmark	
	CO4			✓	\checkmark	\checkmark
	CO1	\checkmark	\checkmark			
	CO2		\checkmark	✓		
BAP4	CO3		\checkmark	✓	\checkmark	
	CO4			\checkmark	\checkmark	\checkmark

SEMESTER V: CC11: Metric Spaces						
Unique Paper CodeName of the Paper			Course Outcome: CO	Statement		
32351501	CC11: Spaces	Metric	CO1	Learn various natural and abstract formulations of distance on the sets of usual or unusual entities. Become aware one such formulations leading to metric spaces.		
	Spaces		CO2	Analyse how a theory advances from a particular frame to a general frame.		
			CO3	Appreciate the mathematical understanding of various geometrical concepts, viz. balls or connected sets etc. in an abstract setting.		
			CO4	Know about Banach fixed point theorem, whose far-reaching consequences have resulted into an independent branch of study in analysis, known as fixed point theory.		
			CO5	Learn about the two important topological properties, namely connectedness and compactness of metric spaces. order PDEs.		

			-				
		CO1	Learn about automorphisms for constructing				
			new groups from the given group.				
32351502		CO2	Learn about the fact that external direct				
	CC12: Group		product applies to data security and electric				
	Theory-II		circuits.				
		CO3	Understand fundamental theorem of finite				
			abelian groups.				
		CO4	Be familiar with group actions and conjugacy				
			in S^n .				
		CO5	Understand Sylow theorems and their				
			applications in checking nonsimplicity.				

	DSE1 : Numerical Analysis						
32357501	DSE1: Numerical Analysis	CO1	Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision.				
		CO2	Know about methods to solve system of linear equations, such as Gauss–Jacobi, Gauss–Seidel and SOR methods.				
		CO3	Interpolation techniques to compute the values for a tabulated function at points not in the table.				
		CO4	Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.				
	DSE2 :	Probability	y Theory and Statistics				
		CO1	Learn about probability density and moment generating functions.				
		CO2	Know about various univariate distributions such as Bernoulli, Binomial, Poisson, gamma and exponential distributions.				
32357507	DSE2: Probability Theory and Statistics	CO3	Learn about distributions to study the joint behavior of two random variables.				
		CO4	Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.				
	BA F	PROGRAM	: DSE-1 : Statistics				
62357503	DSE1: Statistics	CO1	Understand basic properties of the field of real numbers.				
		CO2	Examine continuity and uniform continuity of functions using sequential criterion.				
		CO3	Test convergence of sequence and series of real numbers.				
		CO4	Distinguish between the notion of integral as anti-derivative and Riemann integral.				

	SEMESTER V: COPO MAPPING								
Papers	Program Outcome : PO								
	Course	PO1	PO2	PO3	PO4	PO5			
	Outcom								
	e: CO								
	CO1	\checkmark	\checkmark						
CC11	CO2			✓	\checkmark				
	CO3			✓	✓				
	CO4			✓	✓	 ✓ 			
	CO5			✓	✓				
	CO1			✓	✓				
	CO2		\checkmark	✓					
CC12	CO3		\checkmark	✓	✓				
	CO4		\checkmark	✓					
	CO5			✓		✓			
	CO1	\checkmark	\checkmark						
	CO2		\checkmark	✓					
DSE1	CO3			✓	✓				
	CO4			✓	✓	✓			
	CO1		\checkmark	✓					
	CO2			✓	✓				
DSE2	CO3				✓				
	CO4			✓	✓	✓			
	CO1		\checkmark	✓					
	CO2				✓				
BAP(DSE-1)	CO3			✓	\checkmark				
	CO4				\checkmark	✓			

SEMESTER VI: CC13: Complex Analysis							
Unique Paper Code	-						
32351601CC13: Complex AnalysisCO1Learn the significance of differentiability complex functions leading to the understanding of Cauchy–Riemann equation the contour integrals.							

		CO3	Understand the role of Cauchy-Goursat			
			theorem and the Cauchy integral formula.			
		CO4	Expand some simple functions as their Taylor			
			and Laurent series, classify the nature			
			of singularities, find residues and apply			
			Cauchy Residue theorem to evaluate			
			integrals.			
	CC14: Ri	ing Theory	v and Linear Algebra-II			
		CO1	Appreciate the significance of unique			
			factorization in rings and integral domains.			
32351602	CC14: Ring	CO2	Compute the characteristic polynomial,			
	Theory and		eigenvalues, eigenvectors, and eigenspaces, as			
	Linear Algebra-		well as the geometric and the algebraic			
	II		multiplicities of an eigenvalue and apply the			
			basic diagonalization result.			
		CO3	Compute inner products and determine			
		005	orthogonality on vector spaces, including			
			Gram–Schmidt orthogonalization to obtain			
			orthonormal basis.			
		CO4				
		CO4	Find the adjoint, normal, unitary and			
		CO4				
		ction to Inf	Find the adjoint, normal, unitary and orthogonal operators.			
35357615	DSE3:		Find the adjoint, normal, unitary and orthogonal operators.			
35357615	DSE3: Introduction to	ction to Inf CO1	Find the adjoint, normal, unitary and orthogonal operators. formation Theory and Coding Learn about the basic concepts of information theory.			
35357615	DSE3:	ction to Inf	Find the adjoint, normal, unitary and orthogonal operators.formation Theory and CodingLearn about the basic concepts of information			
35357615	DSE3: Introduction to	ction to Inf CO1	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of			
35357615	DSE3: Introduction to Information	ction to Inf CO1	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities.			
35357615	DSE3: Introduction to Information Theory and	ction to Inf CO1	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of			
35357615	DSE3: Introduction to Information Theory and	ction to Inf CO1 CO2	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities.			
35357615	DSE3: Introduction to Information Theory and	ction to Inf CO1 CO2	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of			
35357615	DSE3: Introduction to Information Theory and	CO1 CO2 CO3	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission.			
35357615	DSE3: Introduction to Information Theory and	CO1 CO2 CO3 CO4	Find the adjoint, normal, unitary and orthogonal operators.Formation Theory and CodingLearn about the basic concepts of information theory.Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities.Learn about the detection and correction of errors while transmission.Representation of a linear code by matrices.			
35357615	DSE3: Introduction to Information Theory and Coding	CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes.			
35357615	DSE3: Introduction to Information Theory and Coding	CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes.			
35357615	DSE3: Introduction to Information Theory and Coding	CO1 CO2 CO3 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes.			
35357615	DSE3: Introduction to Information Theory and Coding	CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic			
	DSE3: Introduction to Information Theory and Coding DSE4 : Lin	ction to Inf CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. Amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points.			
35357615	DSE3: Introduction to Information Theory and Coding DSE4 : Lin DSE4 : Linear	CO1 CO2 CO3 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points. Understand the theory of the simplex method			
	DSE3: Introduction to Information Theory and Coding DSE4 : Lin DSE4 : Linear Programming	ction to Inf CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points. Understand the theory of the simplex method used to solve linear programming			
	DSE3: Introduction to Information Theory and Coding DSE4 : Lin DSE4 : Linear Programming and	ction to Inf CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points. Understand the theory of the simplex method			
	DSE3: Introduction to Information Theory and Coding DSE4 : Lin DSE4 : Linear Programming	ction to Inf CO1 CO2 CO3 CO4 CO5	Find the adjoint, normal, unitary and orthogonal operators. Formation Theory and Coding Learn about the basic concepts of information theory. Know about basic relationship among different entropies and interpretation of Shannon's fundamental inequalities. Learn about the detection and correction of errors while transmission. Representation of a linear code by matrices. Learn about encoding and decoding of linear codes. amming and Applications Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points. Understand the theory of the simplex method used to solve linear programming			

CO4	Learn about two-phase and big-M methods to deal with problems involving artificial variables.	
CO5	Learn about the relationships between the primal and dual problems.	
CO6	Solve transportation and assignment problems.	
CO7	Apply linear programming method to solve	
	two-person zero-sum game problems.	

BA PROGRAM: DSE2 : Differential Equations

62357604	357604 DSE2: Differential Equations		Solve ODE's and know about Wronskian and its properties.	
		CO2	Method of variation of parameters and total differential equations.	
		CO3	O3 Solve linear PDE's of first order.	
		CO4	Understand Lagrange's and Charpit's methods for solving nonlinear PDE's of first order.	

	SEMESTER VI: COPO MAPPING							
Papers	Program Outcome : PO							
	Course PO1 PO2 PO3 PO4 PO5							
	Outcom							
	e: CO							
	CO1	\checkmark	\checkmark					
CC13	CO2			✓				
	CO3			\checkmark				
	CO4			✓	\checkmark	✓		
	CO1	\checkmark	\checkmark					
	CO2			✓				
CC14	CO3			✓				
	CO4			✓	✓	~		
	CO1	\checkmark						
	CO2		\checkmark	✓				
DSE3	CO3			✓				
	CO4			✓	~	✓		
	CO5				~	✓		
	CO1	\checkmark	\checkmark					
	CO2			✓				
DSE4	CO3			✓				
	CO4			\checkmark	\checkmark	\checkmark		

	CO5				\checkmark	
	CO1	\checkmark	\checkmark			
	CO2			✓		
BAP(DSE-2)	CO3		\checkmark	✓		
	CO4			✓	✓	
	CO5				\checkmark	\checkmark